Achieving optimal spatial resolution in imaging systems plays a major role in the design of vision-based industrial inspection tools. Single-view omnidirectional imaging systems provide a cost-effective and computationally-traceable solution for real-time inspection of infrastructure with a favorable size factor. We formulate, for the first time, the spatial cylindrical resolution of omnidirectional Catadioptric and Dioptric imaging systems with the focus on pipe inspection applications. We also provide a design guideline to achieve the highest resolution in these systems. First, we deliver a comprehensive study on optimal resolution in Catadioptric imaging systems which consist of a perspective pinhole camera, a collimated laser as the light source, and a reflective surface (i.e., hyperbolic mirror). Variation of the spatial resolution in terms of the camera's focal length, the mirror curvature, and the relative position between the laser projector and the camera is fully investigated via simulation and experiments. Also, the optimal resolution in Dioptric systems, which consist of a camera with compound refractive lenses (i.e., fish-eye lens) is studied and compared with that in Catadioptric systems. Tests were conducted on a 40-cm-diameter PVC pipe in a controlled laboratory environment.