Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Previous studies have shown that over-wet soil is challenging to compact and exhibits large creep deformation. The consolidation test of small specimens cannot accurately reflect the compression law, and creep is underestimated owing to size effects, which affects the engineering quality. In order to accurately analyze the compression process of over-wet soil and establish its settlement calculation method, this study focuses on over-wet soil in Anhui Province, China, and uses a large-sized tester to load and analyze its compression law. The thermogravimetric analysis method was employed to investigate the changes in water with different binding forces during the compression process, and the settlement calculation method for over-wet soil was explored. The results show that the creep of over-wet soil is large and long-lasting, and the three-stage consolidation division method based on the d−t curve is more effective in analyzing its regularity. The creep of over-wet soil is directly proportional to its water content. When the load exceeds the pre-consolidation pressure, the creep deformation becomes more significant, accounting for about 60% of the deformation under a single level load. It is recommended to use the creep coefficient (λ) for calculation. The results of the thermogravimetric analysis indicate that during the primary consolidation stage, free water is discharged, and weakly bound water is mainly discharged during the third consolidation stage, which is the main cause of creep. Finally, based on the relationship between the creep strain and water content of large samples, a calculation method for the settlement of over-wet soil foundations based on the layered summation method was established, which had a higher prediction accuracy than the conventional layered summation method. The results of this study will help clarify the deformation process and principle of over-wet soil and improve the quality of engineering.
Previous studies have shown that over-wet soil is challenging to compact and exhibits large creep deformation. The consolidation test of small specimens cannot accurately reflect the compression law, and creep is underestimated owing to size effects, which affects the engineering quality. In order to accurately analyze the compression process of over-wet soil and establish its settlement calculation method, this study focuses on over-wet soil in Anhui Province, China, and uses a large-sized tester to load and analyze its compression law. The thermogravimetric analysis method was employed to investigate the changes in water with different binding forces during the compression process, and the settlement calculation method for over-wet soil was explored. The results show that the creep of over-wet soil is large and long-lasting, and the three-stage consolidation division method based on the d−t curve is more effective in analyzing its regularity. The creep of over-wet soil is directly proportional to its water content. When the load exceeds the pre-consolidation pressure, the creep deformation becomes more significant, accounting for about 60% of the deformation under a single level load. It is recommended to use the creep coefficient (λ) for calculation. The results of the thermogravimetric analysis indicate that during the primary consolidation stage, free water is discharged, and weakly bound water is mainly discharged during the third consolidation stage, which is the main cause of creep. Finally, based on the relationship between the creep strain and water content of large samples, a calculation method for the settlement of over-wet soil foundations based on the layered summation method was established, which had a higher prediction accuracy than the conventional layered summation method. The results of this study will help clarify the deformation process and principle of over-wet soil and improve the quality of engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.