Visible light positioning is one of the most popular technologies used for indoor positioning research. Like many other technologies, a calibration procedure is required before the system can be used. More specifically, the location and identity of each light source need to be determined. These parameters are often measured manually, which can be a labour-intensive and error-prone process. Previous work proposed the use of a mobile robot for data collection. However, this robot still needed to be steered by a human operator. In this work, we significantly improve the efficiency of calibration by proposing two novel methods that allow the robot to autonomously collect the required calibration data. In postprocessing, the necessary system parameters can be calculated from these data. The first novel method will be referred to as semi-autonomous calibration, and requires some prior knowledge of the LED locations and a map of the environment. The second, fully-autonomous calibration procedure requires no prior knowledge. Simulation results show that the two novel methods are both more accurate than manual steering. Fully autonomous calibration requires approximately the same amount of time to complete, whereas semi-autonomous calibration is significantly faster.