Calixarenes, composed of phenolic units linked by methylene bridges at the 2,6-positions, represent a versatile class of macrocyclic compounds in supramolecular chemistry that can host small molecules or ions in their well-defined hydrophobic cavities. In recent years, it has been recognized that this class of compounds has the potential to serve as platform for the design of biological active compounds. Therefore, the calixarenes functionalized with different pharmacophoric groups have been synthesized as target structure by many researchers and were further evaluated for their biological activities. Owing to their promising biological activities such as antiviral, antibacterial, antifungal, and anticancer, the functionalized calixarenes are recently receiving increased attention from pharmaceutical/medicinal chemistry community. In this review, we summarize and discuss the synthetic approaches and the biological potential of functionalized calixarenes, mainly focusing on the selected recent studies for a comprehensive and target-oriented information, which could help in the design and synthesis of new therapeutic agents leading to the development of clinically viable drugs based on these macrocyles.
K E Y W O R D Sbiological activity, calixarenes, cone conformation, functionalization, upper/lower rim/annulus