Programming Languages and Systems
DOI: 10.1007/978-3-540-76637-7_27
|View full text |Cite
|
Sign up to set email alerts
|

Call-by-Name and Call-by-Value in Normal Modal Logic

Abstract: Abstract. This paper provides a call-by-name and a call-by-value calculus, both of which have a Curry-Howard correspondence to the minimal normal logic K. The calculi are extensions of the λµ-calculi, and their semantics are given by CPS transformations into a calculus corresponding to the intuitionistic fragment of K. The duality between call-by-name and call-by-value with modalities is investigated in our calculi.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
18
0

Publication Types

Select...
4
3
1

Relationship

2
6

Authors

Journals

citations
Cited by 13 publications
(19 citation statements)
references
References 22 publications
1
18
0
Order By: Relevance
“…(commcontr) is a 'contraction' rule. This is also unfamiliar in dual-context calculiessentially for the same reasons as (commweak)-but is also well-known in Bierman-de Paiva style calculi as a 'garbage collection' rule: see (Goubault-Larrecq, 1996), (Bierman and de Paiva, 2000) and (Kakutani, 2007).…”
Section: Categorical Semanticsmentioning
confidence: 96%
“…(commcontr) is a 'contraction' rule. This is also unfamiliar in dual-context calculiessentially for the same reasons as (commweak)-but is also well-known in Bierman-de Paiva style calculi as a 'garbage collection' rule: see (Goubault-Larrecq, 1996), (Bierman and de Paiva, 2000) and (Kakutani, 2007).…”
Section: Categorical Semanticsmentioning
confidence: 96%
“…This calculus is investigated in some papers [4,28,27]. Logical provability of the Gentzen-style modal type theory is equivalent to intuitionistic K. The desired syntactic properties such as strong normalization and categorical semantics are provided in the papers.…”
Section: Other Systemsmentioning
confidence: 99%
“…For the type theoretic aspects, on the other hand, the approaches are diverse. As of this writing, there are mainly three types of natural deduction systems that have gained popularity, called Gentzen-style [4,28], dual-context [18,30], and Fitch-style [37,13] systems. For the first two systems, their computational and categorical aspects are intensively investigated in a number of papers [17,29], and applied in multi-staged computation [15,39].…”
Section: Introductionmentioning
confidence: 99%
“…A Gentzen-style calculus was first proposed by Bellin et al [2], and was later refined by one of the authors [11], [12]. Dualcontext calculi [5], [8] have been developed mainly for intuitionistic S4 (IS4), because the first dual-context calculus [1] was dedicated to intuitionistic linear logic with the exponential modality.…”
Section: Introductionmentioning
confidence: 99%
“…On the other hand, a model for Gentzen-style and dual-context is believed to be a ccc with a monoidal endofunctor [2], [5], [10], [12], [13]. If we write F for a model of the dual-context calculus, semantics of the dual-context is as follows.…”
Section: Introductionmentioning
confidence: 99%