The transposon piggyBac is being used increasingly for genetic studies. Here, we describe modified versions of piggyBac transposase that have potentially wide-ranging applications, such as reversible transgenesis and modified targeting of insertions. piggyBac is distinguished by its ability to excise precisely, restoring the donor site to its pretransposon state. This characteristic makes piggyBac useful for reversible transgenesis, a potentially valuable feature when generating induced pluripotent stem cells without permanent alterations to genomic sequence. To avoid further genome modification following piggyBac excision by reintegration, we generated an excision competent/integration defective (Exc + Int − ) transposase. Our findings also suggest the position of a target DNA-transposase interaction. Another goal of genome engineering is to develop reagents that can guide transgenes to preferred genomic regions. Others have shown that piggyBac transposase can be active when fused to a heterologous DNA-binding domain. An Exc + Int − transposase, the intrinsic targeting of which is defective, might also be a useful intermediate in generating a transposase whose integration activity could be rescued and redirected by fusion to a site-specific DNA-binding domain. We show that fusion to two designed zinc finger proteins rescued the Int − phenotype. Successful guided transgene integration into genomic DNA would have broad applications to gene therapy and molecular genetics. Thus, an Exc + Int − transposase is a potentially useful reagent for genome engineering and provides insight into the mechanism of transposase-target DNA interaction.NA "cut-and-paste" transposable elements are important tools for genome engineering, such as insertional mutagenesis and transgenesis. Research with the DNA transposon Sleeping Beauty, a "resurrected" transposon, has pioneered the use of DNA transposons in mammalian cells (1, 2). piggyBac is also a DNA transposon and a promising alternative to Sleeping Beauty. piggyBac, originally isolated from the cabbage looper moth Trichoplusia ni genome (3), has a large cargo size (4), is highly active in many cell types, and mediates long-term expression in mammalian cells in vivo (5-10). piggyBac is also distinguished by its ability to excise precisely (11), thus restoring the donor site to its pretransposon insertion sequence.Because it can excise precisely, piggyBac is especially useful if a transgene is only transiently required. Transient integration and expression of transcription factors are important approaches to generate transgene-free induced pluripotent stem cells (iPSCs) (12, 13) as well as directed differentiation of specific cell types for both research and clinical use. Removal of the transgenes is key for potential therapeutic applications of iPSCs. piggyBac has been used as a vector for reversible integration; however, reintegration of the transposon catalyzed by piggyBac (PB) transposase occurs in 40-50% of cells (14)
Int− transposase whose excision frequency is five-to six-f...