Patients with triple negative breast cancer (TNBC) have no successful "targeted" treatment modality, which represents a priority for novel therapy strategies. Upregulated death receptor 5 (DR5) expression levels in breast cancer cells compared to normal cells enable TRA-8, a DR5 specific agonistic antibody, to specifically target malignant cells for apoptosis without inducing normal hepatocyte apoptosis. Drug resistance is a common obstacle in TRAIL-based therapy for TNBC. Calmodulin (CaM) is overexpressed in breast cancer. In this study, we characterized the novel function of CaM antagonist in enhancing TRA-8 induced cytotoxicity in TRA-8 resistant TNBC cells and its underlying molecular mechanisms. Results demonstrated that CaM antagonist(s) enhanced TRA-8 induced cytotoxicity in a concentration and time-dependent manner for TRA-8 resistant TNBC cells. CaM directly bound to DR5 in a Ca dependent manner, and CaM siRNA promoted DR5 recruitment of FADD and caspase-8 for DISC formation and TRA-8 activated caspase cleavage for apoptosis in TRA-8 resistant TNBC cells. CaM antagonist, trifluoperazine, enhanced TRA-8 activated DR5 oligomerization, DR5-mediated DISC formation, and TRA-8 activated caspase cleavage for apoptosis, and decreased anti-apoptotic pERK, pAKT, XIAP, and cIAP-1 expression in TRA-8 resistant TNBC cells. These results suggest that CaM could be a key regulator to mediate DR5-mediated apoptotic signaling, and suggests a potential strategy for using CaM antagonists to overcome drug resistance of TRAIL-based therapy for TRA-8 resistant TNBC.