(1991) Eur: J. Binchem. 201, 295-3021. To delineate the mechanism of this regulation, we hypothesized that the binding of the ligand to its receptor could lead to activation of several second-messenger pathways, which may redundantly stimulate recycling of the receptor. The effects of different regulators of Ca2+ flux or concentrations were investigated on the Tf-R-recycling pathway; these studies were carried out in two cell types. Perhexiline, a calcium antagonist, slowed receptor recycling in comparison with the control by more than 80% in L,C cells and by 60% in Jurkat cells (B and T lymphoblasts, respectively) but did not affect their internalization rate. Perhexiline thus trapped considerable amounts of Tf-R in the internal compartment.Ca2+ chelators, such as EGTA or 1,2-bis(2-aminophenoxy)ethane-N,N,N,N'-tetraacetic acid, and a Ca2+-channel inhibitor (Ni") decreased drastically the recycling rate of Tf-R. Tf-R recycling was shown to be slowed by a calmodulin antagonist. Conversely, artificial elevation of free internal Ca2+ in L,C cells, using lectin, accelerated the recycling rate. These results suggest that the intracellular Ca2+ concentration plays an important role in the outward flow of transferrin receptors. Consequently, we examined the role of transferrin in internal free Ca2+ regulation. The addition of transferrin or anti-(Tf-R) Ig specifically elicited a rise in [Ca2+], as demonstrated by inefficacy of apotransferrin or irrelevant antibodies. These results suggest that CaZ' is a regulator of Tf-R recycling and that Tf-R seems to function as a signaltransduction molecule (perhaps in conjunction with other membrane proteins) rather than merely as an endocytic receptor.