Gao L, Fei H, Connors NC, Zhang J, Levitan IB. Drosophila ortholog of succinyl-CoA synthetase  subunit: a novel modulator of Drosophila KCNQ channels. J Neurophysiol 99: 2736 -2740, 2008. First published April 2, 2008 doi:10.1152/jn.01314.2007. Voltagegated KCNQ potassium channels are responsible for slowly activating potassium currents in heart, brain, and other tissues. Functional defects of KCNQ channels are linked with many diseases, including epilepsy and cardiac arrhythmias. Therefore KCNQ potassium channels have been widely studied, especially in the CNS. We have identified Drosophila CG11963, which encodes a protein orthologous to the  subunit of mammalian succinyl-CoA synthetase (SCS, also known as succinate thiokinase), as a novel modulator of Drosophila KCNQ channels. Direct interaction of CG11963 and dKCNQ was demonstrated by yeast two-hybrid screen and coimmunoprecipitation. Cell surface biotinylation experiments further confirmed that CG11963 resides on the plasma membrane of tsA-201 cells. Coexpression of CG11963 with dKCNQ shifts the conductance-voltage (G-V) relationship of dKCNQ channels to more positive membrane potentials in Chinese hamster ovary (CHO) cells. Moreover, directly dialyzing glutathione S-transferase fusion CG11963 protein into CHO cells also shifts the dKCNQ G-V curve rightward. The effect of CG11963 persists in the presence of 1 mM adenosine triphosphate (ATP), a substrate of SCS. Taken together, our data define CG11963 as a new dKCNQ-binding protein capable of modulating the properties of the channel. Our evidence suggests that this modulation is mediated by direct interaction of CG11963 with the channel and is not dependent on ATP.