Cadherins contribute to the organization of nearly all tissues, but the functions of several evolutionarily conserved cadherins, including those of calsyntenins, remain enigmatic. Puzzlingly, two distinct, non-overlapping functions for calsyntenins were proposed: As postsynaptic neurexin ligands in synapse formation, or as presynaptic adaptors for kinesin-mediated vesicular transport. Here, we show that acute CRISPR-mediated deletion of calsyntenin-3 in cerebellar Purkinje cells in vivo causes a large decrease in inhibitory synapses, but a surprisingly robust increase in excitatory parallel-fiber synapses. No changes in the dendritic architecture of Purkinje cells or in climbing-fiber synapses were detected. Thus, by promoting formation of an excitatory type of synapses and decreasing formation of an inhibitory type of synapses in the same neuron, calsyntenin-3 functions as a postsynaptic adhesion molecule that regulates the excitatory/inhibitory balance in Purkinje cells. No similarly opposing function of a synaptic adhesion molecule was previously observed, suggesting a new paradigm of synaptic regulation.