2019
DOI: 10.5281/zenodo.2638135
|View full text |Cite
|
Sign up to set email alerts
|

CamDavidsonPilon/lifelines: v0.21.0

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 0 publications
0
1
0
1
Order By: Relevance
“…Davidson-Pilon Lifelines KaplanMeierFitter (KMF) [ 42 ] Python module was used to estimate the survival function in Equation (4) and the survival curves were plotted. The KMF module required two inputs, event E and duration T, for which the patient was observed for event E. We used the ‘vital_status’ field from TCGA as event E, in order that a value of one (1) indicates death was observed while a value of zero (0) indicates right-censoring (loss to follow-up).…”
Section: Methodsmentioning
confidence: 99%
“…Davidson-Pilon Lifelines KaplanMeierFitter (KMF) [ 42 ] Python module was used to estimate the survival function in Equation (4) and the survival curves were plotted. The KMF module required two inputs, event E and duration T, for which the patient was observed for event E. We used the ‘vital_status’ field from TCGA as event E, in order that a value of one (1) indicates death was observed while a value of zero (0) indicates right-censoring (loss to follow-up).…”
Section: Methodsmentioning
confidence: 99%
“…Отношение шансов (odds ratio) взаимосвязи между предикторами и вариантами исхода рассчитывали в программной среде Python с помощью пакета sklearn [6], данный пакет позволяет построить модель логистической регрессии и подобрать коэффициенты, наилучшим образом описывающие используемые данные. Отношение рисков (hazard ratio) рассчитывали с помощью пакета lifelines [7] и модуля CoxPHFitter. В статистической программной среде R созданы модели логистической регрессии с использованием пакетов Survival, MASS, car, ggplot2 [8][9][10][11][12], проведен дисперсионный анализ, далее с помощью пакета RMS [13] построены прогностическая номограмма и ROC-кривая.…”
unclassified