The discovery of heavy-chain-only antibodies (HCAbs) in camelids and sharks led to the rise of a new research field in which single-domain antibodies are used for various applications. Single-domain antibodies are the antigen-binding fragments derived from HCAbs showing several beneficial properties (e.g., small size, specificity, stability under extreme conditions, cost-effective production, and ease of engineering). Importantly, they are stable in reducing cytoplasmic environment, which allows their use as an intrabody to target a wide range of intracellular targets. In this chapter, we discuss both the therapeutic potential of camelid single-domain antibodies (nanobodies) and their use as a research tool with the main focus on its intracellular employment. Targeting intracellular proteins using nanobodies as a therapeutic per se is, up to now, limited due to its incapacity to traverse the cellular membrane. They can however serve as a stepping stone to small compound development, since they directly target a resident, endogenous protein, similar to how a conventional drug acts. In addition, nanobodies are highly adaptable tools and possess interesting properties for more fundamental research objectives like the elucidation of protein function, the tracking and visualization of endogenous proteins in an in vivo setting, and the assessment of protein-protein interactions.Keywords: VHH, single-domain antibody, nanobody, intrabody, therapy, research tool
Nanobodies: a concise introductionIn 1993, Hamers-Casterman discovered the presence of heavy-chain-only antibodies in the sera of Camelidae and assessed that these antibodies are still capable of recognizing an extensive repertoire of antigens despite the absence of the light chain. Single-domain antibodies from camels are called nanobodies. They stated that this discovery could be of inestimable © 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.value to the development and engineering of soluble V H domains or new immunological molecules for diagnostic, therapeutic, and biochemical purposes [1]. This discovery gave rise to a whole new research field in which single-domain antibodies are used for a wide range of applications. Some of these will be reviewed in the current chapter.The structural properties of conventional IgG antibodies are well known. These consist of two heavy-chain polypeptides and two light-chain polypeptides, each of which is folded into four and two domains, respectively. A variable domain is situated at the N-terminus of both chains (VH and VL) and, as the name suggests, its sequence diverges between IgG antibodies. Paired VH-VL domains make up the variable fragment (Fab) and are responsible for the recognition and binding of the target antigen. The sequence of the other domains is well conse...