Optimizing the energy efficiency of robotic workstations is a key aspect of industrial automation. This study focuses on the analysis of the relationship between the position of the robot base and its energy consumption and time aspects. A number of 6-axis robots, including the ABB IRB 120 robot, were investigated in this research by combining measurements and simulations using the energy consumption measurement module in the ABB RobotStudio 2024.1.1 environment. The objective of this study was to develop an energy consumption model that can identify the optimal robot positions to minimize energy costs and time losses. The results suggest that the strategic positioning of the robot has a significant impact on its performance and efficiency. These results demonstrate that the ideal working distance of the robots is approximately 50% of its maximum range, and displacements along the X and Z axes affect the energy and time consumption. These findings suggest the existence of a trade-off between time and energy efficiency, providing a basis for further research into the optimization of robotic systems. Thus, this work offers new perspectives for the design of efficient robotic workstations for cross-sensory applications.