2019
DOI: 10.5210/ojphi.v11i1.9849
|View full text |Cite
|
Sign up to set email alerts
|

Camera-based, mobile disease surveillance using Convolutional Neural Networks

Abstract: ObjectiveAutomated syndromic surveillance using mobile devices is an emerging public health focus that has a high potential for enhanced disease tracking and prevention in areas with poor infrastructure. Pacific Northwest National Laboratory sought to develop an Android mobile application for syndromic biosurveillance that would i) use the phone camera to take images of human faces to detect individuals that are sick through a machine learning (ML) model and ii) collect image data to increase training data ava… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 4 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?