Microbial genomes are highly adaptable, with mobile genetic elements (MGEs) such as integrative conjugative elements (ICE) mediating the dissemination of new genetic information throughout bacterial populations. This is countered by defence mechanism such as CRISPR-Cas systems, which limit invading MGEs by sequence-specific targeting. Here we report the distribution the pVir, pTet and PCC42 plasmids and a new 70-129 kb ICE (CampyICE1) in the foodborne microbial pathogens Campylobacter jejuni and Campylobacter coli. CampyICE1 contains a degenerated Type II-C CRISPR system consisting of a sole Cas9 protein, which is distinct from the previously described Cas9 proteins from C. jejuni and C. coli. CampyICE1 is conserved in structure and gene order, containing modules of genes predicted to be involved in recombination, regulation, and conjugation. CampyICE1 was detected in 134/5,829 (2.3%) C. jejuni genomes and 92/1,347 (6.8%) C. coli genomes. Similar ICE were detected in a number of non-jejuni/coli Campylobacter species, although these lacked a CRISPR-Cas system. CampyICE1 carries 3 separate short CRISPR spacer arrays containing a combination of 108 unique spacers and 16 spacer variant families, of which 70 spacers were predicted to target the Campylobacter plasmids pVir, pTet, and pCC42. A further nine spacers were predicted to target other Campylobacter plasmids (63.7%). The presence of a functional CampyICE1 Cas9 protein and matching anti-plasmid spacers was associated with the absence of these plasmids (188/214 genomes, 87.9%), implicating that the CampyICE1-encoded CRISPR-Cas has contributed to the exclusion of competing plasmids. In conclusion, the characteristics of the CRISPR-Cas9 system on CampyICE1 suggests a history of plasmid warfare in Campylobacter.