2022
DOI: 10.48550/arxiv.2201.13329
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Can Adversarial Training Be Manipulated By Non-Robust Features?

Abstract: Adversarial training, originally designed to resist test-time adversarial examples, has shown to be promising in mitigating training-time availability attacks. This defense ability, however, is challenged in this paper. We identify a novel threat model named stability attacks, which aims to hinder robust availability by slightly perturbing the training data. Under this threat, we find that adversarial training using a conventional defense budget provably fails to provide test robustness in a simple statistical… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 27 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?