Can adverse childhood experiences predict chronic health conditions? Development of trauma-informed, explainable machine learning models
Hanin B. Afzal,
Tasfia Jahangir,
Yiyang Mei
et al.
Abstract:IntroductionDecades of research have established the association between adverse childhood experiences (ACEs) and adult onset of chronic diseases, influenced by health behaviors and social determinants of health (SDoH). Machine Learning (ML) is a powerful tool for computing these complex associations and accurately predicting chronic health conditions.MethodsUsing the 2021 Behavioral Risk Factor Surveillance Survey, we developed several ML models—random forest, logistic regression, support vector machine, Naïv… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.