Extreme climatic events (ECEs) such as droughts and heat waves are predicted to increase in intensity and frequency and impact the terrestrial carbon balance. However, we lack direct experimental evidence of how the net carbon uptake of ecosystems is affected by ECEs under future elevated atmospheric CO 2 concentrations (eCO 2 ). Taking advantage of an advanced controlled environment facility for ecosystem research (Ecotron), we simulated eCO 2 and extreme cooccurring heat and drought events as projected for the 2050s and analyzed their effects on the ecosystem-level carbon and water fluxes in a C3 grassland. Our results indicate that eCO 2 not only slows down the decline of ecosystem carbon uptake during the ECE but also enhances its recovery after the ECE, as mediated by increases of root growth and plant nitrogen uptake induced by the ECE. These findings indicate that, in the predicted near future climate, eCO 2 could mitigate the effects of extreme droughts and heat waves on ecosystem net carbon uptake.climate change | extreme events | elevated CO 2 | carbon fluxes | grassland ecosystem I ncreased aridity and heat waves are projected to increase in the 21st century for most of Africa, southern and central Europe, the Middle East, and parts of the Americas, Australia, and southeast Asia (1-3). These regions have a large fraction of their land covered by grasslands and rangelands, a biome covering approximately one-quarter of the Earth's land area and contributing to the livelihoods of more than 800 million people (4). There is mounting evidence that extreme climatic events (ECEs) may significantly affect the regional and global carbon (C) fluxes (3, 5-9) and potentially feed back on atmospheric CO 2 concentrations and the climate system (7). However, our knowledge concerning the outcome of the interaction between future ECEs and elevated atmospheric CO 2 concentrations (eCO 2 ) for ecosystem C stocks is equivocal (10-12). Studies focusing on plant physiological responses have shown that eCO 2 has the potential to mitigate future drought-related stress on plant growth by reducing stomatal conductance, thereby increasing water use efficiency (WUE) (13-15) and preserving soil moisture (16)(17)(18). However, to date, little is known on whether and how eCO 2 alters the consequences of ECEs for ecosystem net C uptake. Because the capacity of ecosystems to act as a C sink depends on the relative effects of eCO 2 , ECE, and their potential interaction on both plant and soil processes, an integrated assessment of all C fluxes during and after the ECEs is important if we are to estimate the overall C balance.Using the Montpellier CNRS Ecotron facility (www.ecotron. cnrs.fr), we tested with 12 large controlled environment units (macrocosms, SI Appendix, Fig. S1) whether (i) an ECE (severe drought and heat wave) predicted for the 2050s reduces ecosystem net C uptake by reducing ecosystem photosynthesis relative to ecosystem respiration (R eco ), (ii) eCO 2 buffers the negative effects of the ECE on ecosystem CO 2 fluxes ...