2023
DOI: 10.1103/physrevd.107.124033
|View full text |Cite
|
Sign up to set email alerts
|

Can gravitational-wave memory help constrain binary black-hole parameters? A LISA case study

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
5
1
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 15 publications
(7 citation statements)
references
References 120 publications
0
5
1
1
Order By: Relevance
“…Therefore, in the case of high SNR for GW signals from MBHBs, neglecting memory may significantly affect the parameter estimation of D L . Some studies suggest that introducing memory can break the degeneracy between D L and ι [104]. However, for TianQin, since it is less sensitive to low-frequency signals compared to LISA, our results do not exhibit a significant break in the degeneracy.…”
Section: A Impact Of Memory On Parameter Estimationcontrasting
confidence: 70%
“…Therefore, in the case of high SNR for GW signals from MBHBs, neglecting memory may significantly affect the parameter estimation of D L . Some studies suggest that introducing memory can break the degeneracy between D L and ι [104]. However, for TianQin, since it is less sensitive to low-frequency signals compared to LISA, our results do not exhibit a significant break in the degeneracy.…”
Section: A Impact Of Memory On Parameter Estimationcontrasting
confidence: 70%
“…质量 ∈ (5, 80)M ⊙ ,质量比 ∈ (0. [42] 、GRACE Follow-On [43] 、太极 一号 [13,20] 和天琴一号 [23] [35,44,45] [15] , 因此需要在数据处理中引入 TDI 环节, 即通过适当延迟和组合干涉测量数据,构造虚拟的 等臂长干涉,从而有效地抑制激光频率噪声 [48][49][50][51][52][53][54] [55,56] 、经数值相对论校正 的有效单体模板 SEOBNR 系列(时域) [57][58][59][60][61][62] 、由 数值相对论波形拟合的唯象模板 IMRPhenom 系 列(频域) [63][64][65][66] 、数值相对论替代(surrogate)模 板 [67][68][69] 等。 加入了离心率、 高阶模、 进动等复杂特 性的模板(如 SEOBNRE [70] 、SEOBNRPHM [71] 、 IMRPhenomXPHM [66] 等)不仅能够更精细地刻 画波源和引力波信号的演变,也有助于打破参数之 间的简并关系,提高参数的估计精度 [72][73][74][75] ,基于 这些模板的研究对数据处理算法开发和科学目标论 证均有指导意义,有待于进一步开展。上述模板的 构建多是以数值相对论波形为基准的,因此数值相 对论的计算精度对于模板精度具有根本性的影响。 文献 [76] 计算了不同解析度的数值相对论模板之间 的匹配因子,研究表明 SXS 波形库 [77] 在 LISA、 太极、天琴的灵敏度下均可达到与地面引力波探测 相当的精度水平。文献 [78] 指出,为实现波源参数 的无偏估计,波形模板 mismatch 的上限应反比于 信号信噪比的平方。根据这一标准,结合全局拟合 和科学目标研究的具体需求,可进一步细化各类波 源模板的精度指标。 在致密双星波源中,EMRI 是一类特殊的天体 系统。EMRI 中双星的质量比约为 10 3 − 10 6 ,波形 复杂度极高,预期会观测到 10 4 − 10 5 个周期 [79,80] 。 目前已有的建模方法包括精度较高、计算相对复杂 的求解 Teukolsky 方程法…”
Section: 表 1 英文缩写释义。unclassified
“…The premise of these studies is that new physics could produce deviations from general relativity that may lead to a different memory amplitude [20]. Other work explores how the inclusion of memory may help to improve the accuracy of gravitationalwave parameter estimation [14,24,46]. Still other publications have discussed the possibility of identifying subsolar-mass compact binary mergers [12] and using memory to distinguish between neutron star-black hole binary and binary black hole mergers [43].…”
Section: Introductionmentioning
confidence: 99%