This study focused on quantifying the gas concentrations of ethylene, benzene, toluene, and ozone within an urban area in the southern region of Romania. The gas sampling campaign, conducted between March and August 2021, took place in three different locations from the point of view of the architectural structure, and the sampling height was 1.5 m. Sampling occurred on weekdays (Monday through Friday) during daylight hours, with subsequent concentration analysis employing descriptive statistics, diurnal cycles, and seasonal assessments. A highly sensitive and selective detector, employing laser photoacoustic spectroscopy, was utilized to monitor pollutants. The average concentrations (±Standard Deviation) were determined as follows: ethylene at 116.82 ± 82.37 parts per billion (ppb), benzene at 1.13 ± 0.32 ppb, toluene at 5.48 ± 3.27 ppb, and ozone at 154.75 ± 68.02 ppb, with peak levels observed during the summer months. Diurnal patterns were observable for ethylene, benzene, and toluene, exhibiting higher concentrations during the early hours of the day followed by a decrease towards the evening. In contrast, ozone concentrations peaked in the evening compared to the early part of the day. Thus, perceptible effects were demonstrated on gas concentrations as a result of the influence of meteorological variables. Moreover, the high toluene/benzene ratio indicated traffic and industrial emissions as primary sources of these pollutants. Of the four gases monitored, benzene and ozone exceeded regulatory limits, particularly during the summer season, highlighting concerns regarding air quality in the studied urban environment.