Background
The diagnosis and prognosis of cardiovascular disorders are greatly aided by cardiovascular biomarkers. The uses of troponin and B-type natriuretic peptide in situations involving carbon monoxide exposure are examined in this narrative review. These biomarkers are important because they help predict outcomes in cardiovascular disorders, track the effectiveness of therapy, and influence therapeutic choices.
Main body
Clinical practice makes considerable use of B-type natriuretic peptide (BNP), which has diuretic and vasodilatory effects, and troponin, a particular marker for myocardial injury. Carbon monoxide (CO) poisoning is a major worldwide health problem because CO, a “silent killer,” has significant clinical consequences. Higher risk of cardiac problems, poorer clinical outcomes, and greater severity of carbon monoxide poisoning are all linked to elevated troponin and B-type natriuretic peptide levels. BNP’s adaptability in diagnosing cardiac dysfunction and directing decisions for hyperbaric oxygen therapy is complemented by troponin’s specificity in identifying CO-induced myocardial damage. When combined, they improve the accuracy of carbon monoxide poisoning diagnoses and offer a thorough understanding of cardiac pathophysiology.
Conclusions
To sum up, this review emphasizes the importance of troponin and B-type natriuretic peptide (BNP) as cardiac indicators during carbon monoxide exposure. While BNP predicts long-term cardiac problems, troponin is better at short-term morbidity and death prediction. When highly sensitive troponin I (hsTnI) and B-type natriuretic peptide are combined, the diagnostic accuracy of carbon monoxide poisoning patients is improved. One of the difficulties is evaluating biomarker levels since carbon monoxide poisoning symptoms are not always clear-cut. Accurate diagnosis and treatment depend on the investigation of new biomarkers and the use of standardized diagnostic criteria. The results advance the use of cardiovascular biomarkers in the intricate field of carbon monoxide exposure.