With the progression of novel urbanization, rural regions are increasingly characterized by mixed-use features, where work and living activities intersect, resulting in a significant surge in per capita carbon emissions. This research article aims to elucidate the spatio-temporal relationship of carbon emissions in rural areas and their association with mixed-use intensity from a sustainable development perspective. For the study, we selected four of the most representative mixed-use village types in the Yangtze River Delta region. Using the STING method, each rural space was delineated into micro-level mixed-use units. Subsequently, a quantitative evaluation model was constructed to gauge the relationship between mixed-use intensity and carbon emissions. This was complemented by employing GIS simulations to analyze the spatio-temporal attributes of carbon emissions in mixed-use villages. Our findings indicate that (1) different types of villages display considerable disparities in mixed-use intensity and carbon emissions. Their correlation also varies significantly, with traditional agricultural villages exhibiting the lowest values of 0.338 and 0.356, while E-commerce-centric villages recorded the highest at 0.674 and 0.653. (2) The carbon emissions of rural units manifest diverse patterns that include dispersed distribution, core aggregation, linear decay, and dissipative fragmentation. These correspond to traditional agriculture, industrial production, tourism service, and E-commerce villages, respectively. (3) The carbon emissions of mixed-use villages exhibit cyclical fluctuations over time, with different magnitudes observed across villages. Traditional agricultural villages display the smallest fluctuations (within 30%), while those centered around tourism services can experience fluctuations exceeding 150%. Building on these insights, we delved deep into the challenges faced by each village type in enhancing the quality of work and living while concurrently achieving energy conservation and emission reduction. Based on these aspects, we propose a sustainable low-carbon development pathway tailored for mixed-use villages.