BACKGROUND
Proton magnetic resonance spectroscopy can be used to assess brain integrity and maturation with age.
OBJECTIVE
To compare regional cerebral magnetic resonance spectroscopy metabolite ratios in extremely low birth weight and healthy term control infants measured at term-equivalent age and to evaluate association between magnetic resonance spectroscopy metabolites and cognitive and language development at 18-22 months’ corrected age.
METHODS
Single-voxel point-resolved spectroscopy sequence was performed in a prospective cohort of 43 infants. Magnetic resonance spectroscopy metabolite ratios of N-acetylaspartate to choline-containing compounds and N-acetylaspartate to myo-inositiol in the hippocampus, cortex, and subventricular zone were associated with Bayley mental, cognitive, and language scores at 18-22 months’ corrected age.
RESULTS
The mean (±S.D.) gestation of the 31 extremely low birth weight population was 25 (±1.1) weeks and mean (±S.D.) birth weight was 749 (±133.9) g. Compared with healthy term control infants, extremely low birth weight infants exhibited consistently lower N-acetylaspartate-to-choline-containing compounds ratios in our three regions of interest, with differences reaching statistical significance for the subventricular zone and cortex regions. In multiple linear regression analyses, N-acetylaspartate-to-choline-containing compounds ratio in the subventricular zone, N-acetylaspartate-to-choline-containing compounds ratio in the cortex, and N-acetylaspartate-to-myo-inositiol ratio in the subventricular zone were significantly associated with Bayley mental scores at 18-22 months’ corrected age.
CONCLUSIONS
Magnetic resonance spectroscopy metabolite abnormalities at term-equivalent age appear to be significantly associated with cognitive and language development in extremely low birth weight infants.