Alternative medicine techniques such as music therapy have been a recent interest of medical practitioners and researchers. Significant clinical evidence suggests that music has a positive influence over pain, stress and anxiety for the patients of cancer, pre and post surgery, insomnia, child birth, end of life care, etc. Similarly, the technologies of Internet of Things (IoT), Body Area Networks (BAN) and Artificial Neural Networks (ANN) have been playing a vital role to improve the health and safety of the population through offering continuous remote monitoring facilities and immediate medical response. In this article, we propose a novel ANN enabled IoT architecture to integrate music therapy with BAN and ANN for providing immediate assistance to patients by automating the process of music therapy. The proposed architecture comprises of monitoring the body parameters of patients using BAN, categorizing the disease using ANN and playing music of the most appropriate type over the patient’s handheld device, when required. In addition, the ANN will also exploit Music Analytics such as the type and duration of music played and its impact over patient’s body parameters to iteratively improve the process of automated music therapy. We detail development of a prototype Android app which builds a playlist and plays music according to the emotional state of the user, in real time. Data for pulse rate, blood pressure and breath rate has been generated using Node-Red, and ANN has been created using Google Colaboratory (Colab). MQTT broker has been used to send generated data to Android device. The ANN uses binary and categorical cross-entropy loss functions, Adam optimiser and ReLU activation function to predict the mood of patient and suggest the most appropriate type of music.