Vegetation indices (VIs) have long been a crucial tool for monitoring plant growth and health, assessing the impact of environmental factors on vegetation, and supporting decision-making processes in agriculture and forestry. Traditionally, these mathematical formulations, leveraging the spectral response of plants to sunlight, have been instrumental in assessing vegetation health. However, emerging research suggests some unconventional applications that extend the scope of VIs. This article surveys the traditional and novel uses of VIs in various fields, including other applications such as climate change studies, disaster management, or microorganism assessment. It underscores the value of VIs, such as the normalized difference vegetation index (NDVI), or the enhanced vegetation index (EVI), in tracking climate-related shifts, mitigating the impact of disasters, assessing microbial terroir, organic production, and even aiding the wine industry. Nonetheless, despite their promise, the practical application of VIs also presents interpretational and technical challenges that need to be addressed. Hence, while the vast potential of VIs is underscored in this article, it also calls for continued technological advancements and research efforts to fully harness their benefits, ultimately aiding in the sustainable management of our environment. The objective of this review is not only to reflect on the current situation, but also to explore innovative and unconventional applications of vegetation indices. This involves anticipating the potential of this dynamic and rapidly advancing scientific tool, rather than solely following mainstream approaches.