For almost 30 years, the term “holobiont” has referred to an ecological unit where a host (e.g., human) and all species living in or around it are considered together. The concept highlights the complex interactions between the host and the other species, which, if disturbed may lead to disease and premature aging. Specifically, the impact of microbiome alterations on the etiology of acute lymphoblastic leukemia (ALL) in children is not fully understood, but has been the focus of much research in recent years. In ALL patients, significant reductions in microbiome diversity are already observable at disease onset. It remains unclear whether such alterations at diagnosis are etiologically linked with leukemogenesis or simply due to immunological alteration preceding ALL onset. Regardless, all chemotherapeutic treatment regimens severely affect the microbiome, accompanied by severe side effects, including mucositis, systemic inflammation, and infection. In particular, dominance of Enterococcaceae is predictive of infections during chemotherapy. Long-term dysbiosis, like depletion of Faecalibacterium, has been observed in ALL survivors. Modulation of the microbiome (e.g., by fecal microbiota transplant, probiotics, or prebiotics) is currently being researched for potential protective effects. Herein, we review the latest microbiome studies in pediatric ALL patients.