Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Finding valid light paths that involve specular vertices in Monte Carlo rendering requires solving many non-linear, transcendental equations in high-dimensional space. Existing approaches heavily rely on Newton iterations in path space, which are limited to obtaining at most a single solution each time and easily diverge when initialized with improper seeds. We propose specular polynomials , a Newton iteration-free methodology for finding a complete set of admissible specular paths connecting two arbitrary endpoints in a scene. The core is a reformulation of specular constraints into polynomial systems, which makes it possible to reduce the task to a univariate root-finding problem. We first derive bivariate systems utilizing rational coordinate mapping between the coordinates of consecutive vertices. Subsequently, we adopt the hidden variable resultant method for variable elimination, converting the problem into finding zeros of the determinant of univariate matrix polynomials. This can be effectively solved through Laplacian expansion for one bounce and a bisection solver for more bounces. Our solution is generic, completely deterministic, accurate for the case of one bounce, and GPU-friendly. We develop efficient CPU and GPU implementations and apply them to challenging glints and caustic rendering. Experiments on various scenarios demonstrate the superiority of specular polynomial-based solutions compared to Newton iteration-based counterparts. Our implementation is available at https://github.com/mollnn/spoly.
Finding valid light paths that involve specular vertices in Monte Carlo rendering requires solving many non-linear, transcendental equations in high-dimensional space. Existing approaches heavily rely on Newton iterations in path space, which are limited to obtaining at most a single solution each time and easily diverge when initialized with improper seeds. We propose specular polynomials , a Newton iteration-free methodology for finding a complete set of admissible specular paths connecting two arbitrary endpoints in a scene. The core is a reformulation of specular constraints into polynomial systems, which makes it possible to reduce the task to a univariate root-finding problem. We first derive bivariate systems utilizing rational coordinate mapping between the coordinates of consecutive vertices. Subsequently, we adopt the hidden variable resultant method for variable elimination, converting the problem into finding zeros of the determinant of univariate matrix polynomials. This can be effectively solved through Laplacian expansion for one bounce and a bisection solver for more bounces. Our solution is generic, completely deterministic, accurate for the case of one bounce, and GPU-friendly. We develop efficient CPU and GPU implementations and apply them to challenging glints and caustic rendering. Experiments on various scenarios demonstrate the superiority of specular polynomial-based solutions compared to Newton iteration-based counterparts. Our implementation is available at https://github.com/mollnn/spoly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.