Background.
Microarray transcript analysis of human renal transplantation biopsies has successfully identified the many patterns of graft rejection. To evaluate an alternative, this report tests whether gene expression from the Banff Human Organ Transplant (B-HOT) probe set panel, derived from validated microarrays, can identify the relevant allograft diagnoses directly from archival human renal transplant formalin-fixed paraffin-embedded biopsies. To test this hypothesis, principal components (PCs) of gene expressions were used to identify allograft diagnoses, to classify diagnoses, and to determine whether the PC data were rich enough to identify diagnostic subtypes by clustering, which are all needed if the B-HOT panel can substitute for microarrays.
Methods.
RNA was isolated from routine, archival formalin-fixed paraffin-embedded tissue renal biopsy cores with both rejection and nonrejection diagnoses. The B-HOT panel expression of 770 genes was analyzed by PCs, which were then tested to determine their ability to identify diagnoses.
Results.
PCs of microarray gene sets identified the Banff categories of renal allograft diagnoses, modeled well the aggregate diagnoses, showing a similar correspondence with the pathologic diagnoses as microarrays. Clustering of the PCs identified diagnostic subtypes including non-chronic antibody-mediated rejection with high endothelial expression. PCs of cell types and pathways identified new mechanistic patterns including differential expression of B and plasma cells.
Conclusions.
Using PCs of gene expression from the B-Hot panel confirms the utility of the B-HOT panel to identify allograft diagnoses and is similar to microarrays. The B-HOT panel will accelerate and expand transcript analysis and will be useful for longitudinal and outcome studies.