A long standing problem, which has its roots in low-dimensional homotopy theory, is to classify all finite groups G for which the integral group ring ℤG has stably free cancellation (SFC). We extend results of R. G. Swan by giving a condition for SFC and use this to show that ℤG has SFC provided at most one copy of the quaternions ℍ occurs in the Wedderburn decomposition of the real group ring ℝG. This generalises the Eichler condition in the case of integral group rings.