It is well known that loss of bone mass, quantified by areal bone mineral density (aBMD) using DXA, is associated with the increasing risk of bone fractures. However, bone mineral density alone cannot fully explain changes in fracture risks. On top of bone mass, bone architecture has been identified as another key contributor to fracture risk. In this study, we used a novel stochastic approach to assess the distribution of aBMD from 2D projection images of Micro-CT scans of trabecular bone specimens at a resolution comparable to DXA images. Sill variance, a stochastic measure of distribution of aBMD, had significant relationships with microarchitecture parameters of trabecular bone, including bone volume fraction, bone surface-to-volume ratio, trabecular thickness, trabecular number, trabecular separation and anisotropy. Accordingly, it showed significantly positive correlations with strength and elastic modulus of trabecular bone. Moreover, a combination of aBMD and sill variance derived from the 2D projection images (R2=0.85) predicted bone strength better than using aBMD alone (R2=0.63). Thus, it would be promising to extend the stochastic approach to routine DXA scans to assess the distribution of aBMD, offering a more clinically significant technique for predicting risks of bone fragility fractures.