Background
Lactate metabolism-related (LMR) long noncoding RNAs (lncRNAs) play significant roles in various cancers, but their impact on kidney renal clear cell carcinoma (KIRC) remains unclear. This study aimed to explore the value of LMR lncRNA and develop a risk model for KIRC.
Methods
Data on KIRC patients were downloaded from The Cancer Genome Atlas (TCGA) database. LMR lncRNAs were identified by co-expression, univariate and multivariate analyses, and least absolute shrinkage selection operator (LASSO) regression analysis. Subsequently, a prognostic signature was constructed and its accuracy was verified. To predict the prognosis of KIRC effectively, we established a nomogram based on this information. Enrichment analysis, tumor mutational burden (TMB) analysis, immune status and the therapeutic sensitivities of KIRC patients were also investigated. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expression of lncRNAs.
Results
We constructed and verified a predictive signature based on six LMR lncRNA (
LINC00944
,
AC090772.3
,
Z83745.1
,
AP001267.3
,
AC092296.1
, and
AL162377.1
) to assess the patient prognoses of KIRC. Survival analyses showed a more unfavorable outcome in high-risk patients (P<0.001). Enrichment analysis demonstrated that immune-related pathways were enriched in the high-risk group. Besides, patients classified by risk scores had distinguishable immune status, TMB, response to immunotherapy, and sensitivity to chemotherapy and targeted drugs.
Conclusions
The LMR lncRNAs signature has significant implications for prognostic assessment and clinical treatment guidance in KIRC.