-Defensins are cationic antimicrobial peptides expressed in epithelia. They exhibit antibacterial, antifungal, and antiviral properties. Defensins are a component of the innate immune response, and it has been proposed that they have a protective role in the oral cavity. Previous studies have shown that human -defensin 1 (hBD-1) is constitutively expressed in oral epithelial cells but that expression varies between individuals. We tested the hypothesis that genetic variations in defensin peptide expression may be associated with opportunistic infections. This may be critical in the immunocompromised patient population, in which innate immune responses may have a relatively more important role. Oral Candida carriage status and the presence of six single-nucleotide polymorphisms (SNPs) in the DEFB1 gene encoding hBD-1 were evaluated in type I diabetic patients (n ؍ 43) and nondiabetic controls (n ؍ 50). Genomic DNA was obtained from buccal swabs. Portions of the DEFB1 gene were amplified, and each SNP was analyzed by a TaqMan assay, standardized with control DNA of known genotype. Candida carriage status was determined from unstimulated saliva on CHROMagar plating medium. A low level of Candida carriage was defined as <350 CFU/ml. A high level of Candida carriage was seen in 44% of the diabetic subjects but only in 28% of the nondiabetic controls (P < 0.05). C. albicans predominated; however, diabetic subjects, especially those with high levels of carriage, showed an increased proportion of Candida glabrata and C. tropicalis. There was a strong association between an SNP in the 5 untranslated region (C3G at position ؊44) and Candida carriage in both groups. Among individuals in the diabetic population who had the SNP allele 2 (G), 58% had low CFU, while 6% had high CFU. The C3G SNP at position ؊44 is associated with low levels of Candida carriage. The resultant odd ratios are statistically significant for a protective effect (odd ratios, 25 for diabetic subjects and 8.5 for nondiabetic subjects). These results indicate that genetic variations in the DEFB1 gene encoding hBD-1 may have a major role in mediating and/or contributing to susceptibility to oral infection.