Epithelial ovarian cancer (EOC) can be considered as a stressful and challenging disease among all women in the world, which has been associated with a poor prognosis and its molecular pathogenesis has remained unclear. In recent years, RNA Sequencing (RNA-seq) has become a functional and amazing technology for profiling gene expression. In the present study, RNA-seq raw data from Sequence Read Archive (SRA) of six tumor and normal ovarian sample was extracted, and then analysis and statistical interpretation was done with Linux and R Packages from the open-source Bioconductor. Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were applied for the identification of key genes and pathways involved in EOC. We identified 1091 Differential Expression Genes (DEGs) which have been reported in various studies of ovarian cancer as well as other types of cancer. Among them, 333 genes were up-regulated and 273 genes were downregulated. In addition, Differentially Expressed Genes (DEGs) including RPL41, ALDH3A2, ERBB2, MIEN1, RBM25, ATF4, UPF2, DDIT3, HOXB8 and IL17D as well as Ribosome and Glycolysis/Gluconeogenesis pathway have had the potentiality to be used as targets for EOC diagnosis and treatment. In this study, unlike that of any other studies on various cancers, ALDH3A2 was most down-regulated gene in most KEGG pathways, and ATF4 was most up-regulated gene in leucine zipper domain binding term. In the other hand, RPL41 as a regulatory of cellular ATF4 level was up-regulated in many term and pathways and augmentation of ATF4 could justify the increase of RPL41 in the EOC. Pivotal pathways and significant genes, which were identified in the present study, can be used for adaptation of different EOC study. However, further molecular biological experiments and computational processes are required to confirm the function of the identified genes associated with EOC.