Prolonged prenatal or adult exposure to ethanol is detrimental to mental and physical well-being, resulting in developmental abnormalities, progressive addiction and ultimate death. A growing number of studies have shown the therapeutic potential of cannabinoids in ethanol-related behaviors in mammals. However, the potential pharmacological actions of cannabinoids in ethanol responses have not been examined in the model organism Drosophila melanogaster. Here, we systematically investigated the effects of various cannabinoids on ethanol preference, ethanol sensitivity and tolerance, and ethanol-induced developmental defect in Drosophila. We showed that treatment with the phytocannabinoid cannabidiol (CBD) displayed a significant decrease in preference for consuming ethanol in adult flies. Interestingly, cannabinoids exhibited differential roles in short- and long- term ethanol tolerance in flies. Although cannabinoids had no detectable effects on short-term ethanol tolerance, CBD and the endocannabinoid anandamide (AEA) suppressed long-term tolerance to ethanol. Moreover, ethanol exposure delayed larval-to-pupal development and increased larval/pupal size. Unexpectedly, treatment with CBD or endocannabinoids did not attenuate ethanol-induced developmental delay, instead, exacerbated its detrimental effect. Thus, our systematical study reveals, for the first time, a differential role of the cannabinoids in the modulation of ethanol-related responses in Drosophila.