Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The slowest heating zone tends to move about in food systems with convective and predominantly convective heat transfer. If the thermocouple follows the movement, the process lethality differs from the value precalculated for a fixed thermocouple location. Hence, the heat treatment modes depend on the movement of the slowest heating zone, which should be taken into account before planning food system processes. This research aimed at identifying a statistically significant difference between lethality for fixed and moving slowest heating zones in various food systems. The study involved four homophasic and heterophasic model food systems. Food System 1 was heterophase, with a dispersed phase not involved in convection and a liquid dispersion medium of aqueous solution with 1.5% sucrose and 1.5% NaCl. Food System 2 was heterophase, with a dispersed phase not involved in convection and a liquid dispersion medium of 11% aqueous sucrose solution. Food System 3 was represented by homophase reconstituted clarified baby-food apple juice with 11.2% soluble solids. Food System 4 was a heterophase model system, represented by reconstituted baby-food apple juice with pulp and 11.2% soluble solids with a dispersed phase involved in convection. The temperature changes were monitored using the E-ValPro multichannel system and the SSA-TS model temperature sensors. The temperature sensors were fixed inside the jar with the food system. Food System 1 showed no significant differences in lethality. Other model systems had sterilization temperature intervals when the difference in lethality was statistically significant. However, this difference was very small for Food Systems 2 and 3. The largest difference belonged to Food System 4, where the dispersed phase was involved in the convective flow. In this research, a statistically significant difference in lethality for fixed and moving slowest heating zones occurred only in heterophase food systems with convective and predominantly convective heat exchange, where the dispersed phase was involved in the convection flow. This fact must be taken into account when identifying heat treatment modes for such food systems.
The slowest heating zone tends to move about in food systems with convective and predominantly convective heat transfer. If the thermocouple follows the movement, the process lethality differs from the value precalculated for a fixed thermocouple location. Hence, the heat treatment modes depend on the movement of the slowest heating zone, which should be taken into account before planning food system processes. This research aimed at identifying a statistically significant difference between lethality for fixed and moving slowest heating zones in various food systems. The study involved four homophasic and heterophasic model food systems. Food System 1 was heterophase, with a dispersed phase not involved in convection and a liquid dispersion medium of aqueous solution with 1.5% sucrose and 1.5% NaCl. Food System 2 was heterophase, with a dispersed phase not involved in convection and a liquid dispersion medium of 11% aqueous sucrose solution. Food System 3 was represented by homophase reconstituted clarified baby-food apple juice with 11.2% soluble solids. Food System 4 was a heterophase model system, represented by reconstituted baby-food apple juice with pulp and 11.2% soluble solids with a dispersed phase involved in convection. The temperature changes were monitored using the E-ValPro multichannel system and the SSA-TS model temperature sensors. The temperature sensors were fixed inside the jar with the food system. Food System 1 showed no significant differences in lethality. Other model systems had sterilization temperature intervals when the difference in lethality was statistically significant. However, this difference was very small for Food Systems 2 and 3. The largest difference belonged to Food System 4, where the dispersed phase was involved in the convective flow. In this research, a statistically significant difference in lethality for fixed and moving slowest heating zones occurred only in heterophase food systems with convective and predominantly convective heat exchange, where the dispersed phase was involved in the convection flow. This fact must be taken into account when identifying heat treatment modes for such food systems.
The course of a forensic analysis of long-term storage food products (canned vegetables) has been reviewed. The significance of the stage of external inspection, examination of the label is shown. The expertise objects are finished products of the canning industry in factory package (vegetable marinades and first courses). The objects were examined for compliance with the appropriate GOST requirements and technical specifications for organoleptic characteristics, net weight, mass fraction of ingredients.As a result of determining the organoleptic properties of canned vegetables “Pickled beetroot” the presence of individual pieces with black firm beet tissue has been detected which indicates violation of technological patterns of production. The presence of a particle of an outside impurity has also been detected that is a particle of paint coating based on alkyd binder and containing calcium carbonate as a filler which is unacceptable. The deviation of the canned vegetables net contents from the nominal amount indicated on the label meets the requirements of the regulations. For individual cans from the sample provided for analysis the experts have found non-compliance with the technical specifications for the rate “Mass fraction of vegetables from the total mass of canned goods”.When examining the canned good “First courses. Borsch with fresh cabbage” it has been identified that the samples have various labels on the consumer containers which indicates the presence of samples from different shipments.
The article presents a specific methodology for forensic commodity examination of food products: expert analysis of canned meat and meat-containing products made of different raw materials. On a specific example from expert practice – conduct of a forensic commodity examination of a consignment of 12600 cans of meat product “beef stew” – the author shows the research program and its stages: sampling, establishment of the commodity affiliation of goods, analysis of the actual characteristics (markings, consumer packaging) of the tested products and verification of their compliance with the requirements of regulatory and technical documentation; measurement of quantitative indicators of products; examination of the submitted laboratory tests protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.