Binary blends of canola oil (CO) and palm olein (POo) or fully hydrogenated soybean oil (FHSBO) were interesterified using commercial lipase, Lypozyme TL IM, or sodium methoxide. Free fatty acids (FFA) and soap content increased and peroxide value (PV) decreased after enzymatic or chemical interesterification. No difference was observed between the PV of enzymatically and chemically interesterified blends. Enzymatically interesterified fats contained higher FFA and lower soap content than chemically prepared fats. Slip melting point (SMP) and solid-fat content (SFC) of CO and POo blends increased, whereas those of CO and FHSBO blends decreased after chemical or enzymatic interesterification. Enzymatically interesterified CO and POo blends had lower SMP and SFC (at some temperatures) than chemically interesterified blends. The status was reverse when comparing chemically and enzymatically interesterified CO and FHSBO blends. The induction period for oxidation at 1207C of blends decreased after interesterification. However, chemically interesterified blends were more oxidatively stable than enzymatically interesterified blends. Interesterified blends of CO and POo or FHSBO displayed characteristics suited to application as trans-free soft tub, stick, roll-in and baker's margarine, cake shortening and vanaspati fat.