(Pro)renin receptor ((P)RR), a specific receptor for renin and prorenin, is expressed in erythroblastic cells. (P)RR has multiple biological actions: prorenin activation, stimulation of the intracellular signaling including extracellular signal-regulated kinases, and functional complex formation with vacuolar H + -ATPase (v-ATPase). However, the functional implication of (P)RR in erythroblast cells has not been clarified. The aim of the present study was to clarify changes of (P)RR expression during erythropoiesis and a role of (P) RR in the heme synthesis. (P)RR expression was studied during rapamycin-induced erythropoiesis in a human erythroleukemia cell line, K562. Treatment with rapamycin (100 nM) for 48 hours significantly increased %number of hemoglobin-producing cells, γ -globin mRNA levels, erythroid specific 5-aminolevulinate synthase (ALAS2) mRNA levels, and heme content in K562 cells. Both (P)RR protein and mRNA levels increased about 1.4-fold during rapamycin-induced erythropoiesis. Suppression of (P) RR expression by (P)RR-specific small interference RNA increased ALAS2 mRNA levels about 1.6-fold in K562 cells, compared to control using scramble RNA, suggesting that (P)RR may down-regulate ALAS2 expression. By contrast, treatment with bafilomycin A1, an inhibitor of v-ATPase, decreased greatly % number of hemoglobin-producing cells and heme content in K562 cells, indicating that the v-ATPase function is essential for hemoglobinization and erythropoiesis. Treatment with bafilomycin A1 increased (P) RR protein and mRNA levels. In conclusion, we propose that (P)RR has dual actions on erythropoiesis: the promotion of erythropoiesis via v-ATPase function and the down-regulation of ALAS2 mRNA expression. Thus, (P)RR may contribute to the homeostatic control of erythropoiesis.