Deficit irrigation (DI) strategies and soil cover are highly effective to improve the the water productivity in semi-arid regions. However, the effective monitoring of plant water status under DI strategies becomes crucial. The main objective of this study was to evaluate the use of thermal images to estimate the water status of melon plants cultivated in soil with and without mulching under different irrigation regimes. The experience was carried out from October to December 2018. The study was carried out in a randomized block design, in a split plot arrangement. Plots were composed by soil cover (with and without mulching with plant material), and subplots by 5 irrigation regimes (120, 100, 80, 60 and 40% of crop evapotranspiration-ETc), with five replicates. The following variables were evaluated: canopy temperature (Tcanopy), leaf water potential (Ψleaf), air temperature (Tair), soil moisture, crop yield and the thermal index (ΔT), this being defined as the difference between Tcanopy and Tair. ΔT showed high correlations with crop yield and crop water consumption, evidencing that thermography is an efficient tool to identify the water status of melon plants and could be employed for a proper irrigation scheduling under the tropical semi-arid scenarios. Moreover, the use of thermal images also allowed the identification of beneficial effects of soil cover on leaf water status and crop yield, mainly under moderate DI. The obtained results also demonstrate that mulching is essential to increase melon yield and water productivity in tropical regions.