2022
DOI: 10.1016/j.ijggc.2022.103759
|View full text |Cite
|
Sign up to set email alerts
|

Capability of elastic-wave imaging for monitoring conformance and containment in geologic carbon storage

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 60 publications
0
1
0
Order By: Relevance
“…Numerical seismic wave field simulation based on the elastic wave equation is important to study the kinematics and dynamics characteristics of seismic wave propagation in geologic bodies, which is widely used in seismic design [1], geologic survey [2], and non-destructive structure detection [3]. Currently, the numerical seismic wave field simulation methods include the finite element method (FEM) [4,5], the finite difference method (FDM) [6,7], and the boundary element method (BDM) [8,9].…”
Section: Introductionmentioning
confidence: 99%
“…Numerical seismic wave field simulation based on the elastic wave equation is important to study the kinematics and dynamics characteristics of seismic wave propagation in geologic bodies, which is widely used in seismic design [1], geologic survey [2], and non-destructive structure detection [3]. Currently, the numerical seismic wave field simulation methods include the finite element method (FEM) [4,5], the finite difference method (FDM) [6,7], and the boundary element method (BDM) [8,9].…”
Section: Introductionmentioning
confidence: 99%