2016
DOI: 10.1080/14328917.2016.1265258
|View full text |Cite
|
Sign up to set email alerts
|

Capacitance behaviors of EDOT and pyrrole copolymer, and equivalent circuit model

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2019
2019
2020
2020

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 47 publications
0
1
0
Order By: Relevance
“…Regarding the electrical behavior of copolymers, Chen et al [32] have synthesized a copolymer based on 3,4-ethylenedioxythiophene (EDOT) and 3-thienyl ethoxybutanesulfonate (TEBS) showing conductivity almost 6 times higher than compared with pure homopolymer (PEDOT). In the same way, Ates and Ekmen prepared an EDOT-pyrrole (Py) copolymer with a slight gain on the capacitance when compared with both homopolymers that could be a promising electrode material for high-performance electrical energy storage devices [33] . In a different approach, Kulandaivalu et al [34] prepared a copolymer of EDOT and aniline by electrodeposition and performed electrochemical impedance spectroscopy experiments to understand its electrical behavior and proposed a path to analyze the results, which explained that the incorporation of the EDOT in aniline makes the interfacial resistance of the copolymer to be lower than neat polyaniline.…”
Section: Introductionmentioning
confidence: 99%
“…Regarding the electrical behavior of copolymers, Chen et al [32] have synthesized a copolymer based on 3,4-ethylenedioxythiophene (EDOT) and 3-thienyl ethoxybutanesulfonate (TEBS) showing conductivity almost 6 times higher than compared with pure homopolymer (PEDOT). In the same way, Ates and Ekmen prepared an EDOT-pyrrole (Py) copolymer with a slight gain on the capacitance when compared with both homopolymers that could be a promising electrode material for high-performance electrical energy storage devices [33] . In a different approach, Kulandaivalu et al [34] prepared a copolymer of EDOT and aniline by electrodeposition and performed electrochemical impedance spectroscopy experiments to understand its electrical behavior and proposed a path to analyze the results, which explained that the incorporation of the EDOT in aniline makes the interfacial resistance of the copolymer to be lower than neat polyaniline.…”
Section: Introductionmentioning
confidence: 99%