“…Regarding the electrical behavior of copolymers, Chen et al [32] have synthesized a copolymer based on 3,4-ethylenedioxythiophene (EDOT) and 3-thienyl ethoxybutanesulfonate (TEBS) showing conductivity almost 6 times higher than compared with pure homopolymer (PEDOT). In the same way, Ates and Ekmen prepared an EDOT-pyrrole (Py) copolymer with a slight gain on the capacitance when compared with both homopolymers that could be a promising electrode material for high-performance electrical energy storage devices [33] . In a different approach, Kulandaivalu et al [34] prepared a copolymer of EDOT and aniline by electrodeposition and performed electrochemical impedance spectroscopy experiments to understand its electrical behavior and proposed a path to analyze the results, which explained that the incorporation of the EDOT in aniline makes the interfacial resistance of the copolymer to be lower than neat polyaniline.…”