Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This paper presents a comprehensive review of state-of-health (SoH) estimation methods for lithium-ion batteries, with a particular focus on the specific challenges encountered in hybrid electric vehicle (HEV) applications. As the demand for electric transportation grows, accurately assessing battery health has become crucial to ensuring vehicle range, safety, and battery lifespan, underscoring the relevance of high-precision SoH estimation methods in HEV applications. The paper begins with outlining current SoH estimation methods, including capacity-based, impedance-based, voltage and temperature-based, and model-based approaches, analyzing their advantages, limitations, and applicability. The paper then examines the impact of unique operating conditions in HEVs, such as frequent charge–discharge cycles and fluctuating power demands, which necessitate tailored SoH estimation techniques. Moreover, this review summarizes the latest research advances, identifies gaps in existing methods, and proposes scientifically innovative improvements, such as refining estimation models, developing techniques specific to HEV operational profiles, and integrating multiple parameters (e.g., voltage, temperature, and impedance) to enhance estimation accuracy. These approaches offer new pathways to achieve higher predictive accuracy, better meeting practical application needs. The paper also underscores the importance of validating these estimation methods in real-world scenarios to ensure their practical feasibility. Through systematic evaluation and innovative recommendations, this review contributes to a deeper understanding of SoH estimation for lithium-ion batteries, especially in HEV contexts, and provides a theoretical basis to advance battery management system optimization technologies.
This paper presents a comprehensive review of state-of-health (SoH) estimation methods for lithium-ion batteries, with a particular focus on the specific challenges encountered in hybrid electric vehicle (HEV) applications. As the demand for electric transportation grows, accurately assessing battery health has become crucial to ensuring vehicle range, safety, and battery lifespan, underscoring the relevance of high-precision SoH estimation methods in HEV applications. The paper begins with outlining current SoH estimation methods, including capacity-based, impedance-based, voltage and temperature-based, and model-based approaches, analyzing their advantages, limitations, and applicability. The paper then examines the impact of unique operating conditions in HEVs, such as frequent charge–discharge cycles and fluctuating power demands, which necessitate tailored SoH estimation techniques. Moreover, this review summarizes the latest research advances, identifies gaps in existing methods, and proposes scientifically innovative improvements, such as refining estimation models, developing techniques specific to HEV operational profiles, and integrating multiple parameters (e.g., voltage, temperature, and impedance) to enhance estimation accuracy. These approaches offer new pathways to achieve higher predictive accuracy, better meeting practical application needs. The paper also underscores the importance of validating these estimation methods in real-world scenarios to ensure their practical feasibility. Through systematic evaluation and innovative recommendations, this review contributes to a deeper understanding of SoH estimation for lithium-ion batteries, especially in HEV contexts, and provides a theoretical basis to advance battery management system optimization technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.