Many connective tissue diseases and defects are associated with poor synthesis or excessive degradation of collagen. The modern tissue engineering approach is to replace the defective site via the implantation of a biocompatible scaffold which serves as a carrier for cell incorporation, proliferation, and growth. Collagen is widely used in the field of clinical medicine in connection with both hard and soft tissue applications. However, certain collagen properties such as poor dimensional stability, poor in vivo mechanical strength, low degree of elasticity, variable nature in terms of enzymatic degradation, crosslinking density, fiber size, trace impurities, and side effects frequently limit both its analysis and application. This review focuses particularly on the processing and modification of collagen type I with respect to its biological and mechanical properties. The processing of collagen into scaffolds is crucial to mimic successfully the extracellular matrices. Moreover, the review suggests several ways in which the most common problems related to the isolation, handling, electrospinning, and crosslinking of collagen can be overcome while maintaining its native character as much as possible. Further, the review provides a summary of the analytical methods available for the physicochemical characterization of collagen with respect to both its molecular and submolecular structure.