The formation of cracks in quasi-brittle materials such as concrete produces a degradation in mechanical performance in terms of both stiffness and strength. In addition to this, the presence of cracks leads to significant durability problems, such as reinforcement corrosion and calcium leaching [1]. Self-healing systems are designed to mitigate these issues by introducing crack 'healing' mechanisms into the material that result in a recovery of both mechanical performance and durability properties. There is now a significant body of work on the numerical simulation of self-healing systems [2-19], as highlighted in a recent review article [20]. The numerical treatment of damage-healing behaviour in mechanical self-healing models has varied, with many utilising a continuum damage-healing mechanics framework (e.g. [5, 7]). Alternative approaches have included a model based on micromechanical theories [11], the discrete element method (DEM) [13], the extended finite element method (XFEM) [12] and embedded discontinuity elements (EFEM) [17]. In addition to this, the treatment of the healing itself has varied, ranging from treating the healing as a thermodynamic