A series of Pt–Sb
complexes with two or three L-type quinoline
side arms were prepared and studied. Two ligands, tri(8-quinolinyl)stibane
(SbQ3, Q = 8-quinolinyl, 1) and 8,8′-(phenylstibanediyl)diquinoline
(SbQ2Ph, 2), were used to synthesize the PtII–SbIII complexes (SbQ3)PtCl2 (3) and (SbQ2Ph)PtCl2 (4). Chloride abstraction with AgOAc provided the bis-acetate
complexes (SbQ3)Pt(OAc)2 (5) and
(SbQ2Ph)Pt(OAc)2 (6). To better
understand the electronic effects of the Sb moiety, analogous bis-chloride
complexes were oxidized to an overall formal oxidation state of +7
(i.e., Pt + Sb formal oxidation states = 7) using dichloro(phenyl)-λ3-iodane (PhICl2) and 3,4,5,6-tetrachloro-1,2-dibenzoquinone
(o-chloranil) as two-electron oxidants. Depending
on the oxidant, different conformational changes occur within the
coordination sphere of Pt as confirmed by single-crystal X-ray diffraction
and NMR spectroscopy. In addition, the nature of Pt–Sb interactions
was evaluated via molecular and localized orbital calculations.