Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background/Objectives: Migraine is a disease that stands out for its high prevalence and socioeconomic costs. It involves the entire trigeminovascular system, the signaling substances, and their targets. However, the role of meningeal mast cells in migraine is still unclear. To better understand one of the components of neurogenic inflammation underlying migraine pathophysiology, we developed an in vivo rat model in which the dura mater was exposed bilaterally to investigate the influence of topiramate on capsaicin-induced mast cell degranulation and CGRP release from dura mater. Methods: On the day of the experiment, rats were anesthetized, and a craniectomy was performed on each parietal bone. Test substances were applied in situ over the dura mater using the right and left sides of the dura mater for the test and control, respectively. After exposure, the dura mater was processed for mast cell staining and counting. Using this setup, the effect of capsaicin (10−3 M) was evaluated in rats of both sexes, and subsequently the effect of in situ (10−3 M, 20 µL) and (20 mg/kg/day for 10 days) topiramate treatment on mast cell degranulation and CGRP release were evaluated. Results: In both female and male rats, there was a greater amount of degranulated mast cells in the side stimulated by capsaicin compared to the control side in both females (18 ± 3% vs. 74 ± 3%; p = 0.016) and males (28 ± 2% vs. 74 ± 3%, p = 0.016). In the group treated with topiramate for 10 days prior to the experiments, capsaicin did not induce mast cell degranulation (control 20 ± 1% vs. capsaicin 22 ± 1%, p = 0.375) in contrast to animals treated for 10 days with gavage control (control 25 ± 1% vs. capsaicin 76 ± 1%, p = 0.016). Topiramate applied in situ concomitant with capsaicin did not protect the mast cells from degranulation in response to capsaicin (38 ± 2% vs. 44 ± 1%, p = 0.016). There was a significant reduction in CGRP release from the dura mater in the group treated with topiramate for 10 days compared to the control. Conclusions: This study demonstrates a novel experimental model wherein systemic administration of topiramate is observed to modulate the impact of capsaicin on meningeal mast cell degranulation.
Background/Objectives: Migraine is a disease that stands out for its high prevalence and socioeconomic costs. It involves the entire trigeminovascular system, the signaling substances, and their targets. However, the role of meningeal mast cells in migraine is still unclear. To better understand one of the components of neurogenic inflammation underlying migraine pathophysiology, we developed an in vivo rat model in which the dura mater was exposed bilaterally to investigate the influence of topiramate on capsaicin-induced mast cell degranulation and CGRP release from dura mater. Methods: On the day of the experiment, rats were anesthetized, and a craniectomy was performed on each parietal bone. Test substances were applied in situ over the dura mater using the right and left sides of the dura mater for the test and control, respectively. After exposure, the dura mater was processed for mast cell staining and counting. Using this setup, the effect of capsaicin (10−3 M) was evaluated in rats of both sexes, and subsequently the effect of in situ (10−3 M, 20 µL) and (20 mg/kg/day for 10 days) topiramate treatment on mast cell degranulation and CGRP release were evaluated. Results: In both female and male rats, there was a greater amount of degranulated mast cells in the side stimulated by capsaicin compared to the control side in both females (18 ± 3% vs. 74 ± 3%; p = 0.016) and males (28 ± 2% vs. 74 ± 3%, p = 0.016). In the group treated with topiramate for 10 days prior to the experiments, capsaicin did not induce mast cell degranulation (control 20 ± 1% vs. capsaicin 22 ± 1%, p = 0.375) in contrast to animals treated for 10 days with gavage control (control 25 ± 1% vs. capsaicin 76 ± 1%, p = 0.016). Topiramate applied in situ concomitant with capsaicin did not protect the mast cells from degranulation in response to capsaicin (38 ± 2% vs. 44 ± 1%, p = 0.016). There was a significant reduction in CGRP release from the dura mater in the group treated with topiramate for 10 days compared to the control. Conclusions: This study demonstrates a novel experimental model wherein systemic administration of topiramate is observed to modulate the impact of capsaicin on meningeal mast cell degranulation.
Cancer is a global health challenge with rising incidence and mortality rates, posing significant concerns. The World Health Organization reports cancer as a leading cause of death worldwide, contributing to nearly one in six deaths. Cancer pathogenesis involves disruptions in cellular signaling pathways, resulting in uncontrolled cell growth and metastasis. Among emerging players in cancer biology, Transient Receptor Potential (TRP) channels, notably TRPV1, have garnered attention due to their altered expression in cancer cells and roles in tumorigenesis and progression. TRPV1, also known as the capsaicin receptor, is pivotal in cancer cell death and pain mediation, offering promise as a therapeutic target. Activation of TRPV1 triggers calcium influx and affects cell signaling linked to growth and death. Additionally, TRPV1 is implicated in cancer-induced pain and chemo-sensitivity, with upregulation observed in sensory neurons innervating oral cancers. Also, when capsaicin, a compound from chili peppers, interacts with TRPV1, it elicits a “hot” sensation and influences cancer processes through calcium influx. Understanding TRPV1’s multifaceted roles in cancer may lead to novel therapeutic strategies for managing cancer-related symptoms and improving patient outcomes. The current review elucidates the comprehensive role of capsaicin in cancer therapy, particularly through the TRPV1 channel, highlighting its effects in various cells via different signaling pathways and discussing its limitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.