Recovery of circulating tumor cells (CTCs) from cancer patients by an efficient CTCs capture and release method can greatly increase their application in diagnostics and treatment of cancers. In this paper, we presented a folic acid (FA)-functionalized hybrid photonic barcode for capture and release of CTCs. The hybrid photonic barcodes were formed by two nano-ordered parts, poly(ethylene glycol) diacrylate (PEGDA) inverse opal structure for sustaining integrity and methacrylated gelatin (GelMA) gel filler for conjugating FA molecules to mediate cell capture. The nano-ordered structures of the hybrid photonic barcodes not only increased contact area, but also decreased steric hindrance among FA molecules. Thus, the topographic interaction between the barcodes and CTCs was greatly enhanced. In addition, GelMA gel was soft and extracellular matrix (ECM) alike, which was beneficial to decrease impairment to CTCs during the CTCs-barcode interaction as well as preserving their viability. Demonstrated by four CTCs types, Hela (epithelial tissue, folate receptor positive, FR+), A02 (bone marrow, FR+), Raji (lymphoid tissue, FR+), and A549 (epithelial tissue, folate receptor negative, FR-), FR+ CTCs could be captured efficiently with reliability and specificity. The captured cells could be controllably released with high viability just by quick trypsinization. The whole processes were simple and efficient. These features indicated that the FA-functionalized hybrid photonic barcodes were promising for full recovery of CTCs from cancer patients, which was important for diagnosis and treatment of cancer.