In this study, a blast furnace slag (BFS) and fly ash (FA) based adsorbent geopolymer to be used for removing Pb2+ from aqueous solutions were synthesized using the hydrothermal method at 60 °C for 24 h, and then cured at 25 °C for another six days. The alkali activator applied in this work was a combination of sodium hydroxide and sodium silicate solutions at a mass ratio of 2. The geopolymer slurry was adjusted to a Si/Al molar ratio of 3. A BFS-based geopolymer (GS) having a specific area of 23.56 m2/g and pore size and volume of 7.8 nm and 73 cm3/kg, respectively, surpassed the raw material surface by approximately 13-fold. An FA-based geopolymer (GA) having a specific area of 35.97 m2/g and a size and porous volume of 9 nm and 124 nm, respectively, surpassed the raw material surface by approximately 23-fold. In addition, GS and GA showed a cation exchange capacity (CEC) of 241.30 and 286.96 Meq/100 g, respectively. X-ray diffraction (XRD) determined sample crystallinity and it was proven by scanning electron microscopy (SEM), showing that both geopolymers were constituted of unreacted particles surrounded by amorphous and semi-amorphous products. Through Fourier transform infrared spectroscopy (FTIR), a band that was assigned to the asymmetric stretching vibration of Si-O-M (M = Na+ and/or Ca2+) non-bridging oxygen type was observed, which suggested that Na and Ca could serve as exchangeable ions in the ionic exchange process. Adsorption test data indicated that good adsorption was obtained when a neutral pH was used at room temperature, and the adsorption isotherm showed that GA had more adsorption sites than GS, which meant greater maximum adsorption capacity.