SummaryComputational models of cell signalling are perceived by many biologists to be prohibitively complicated. Why do math when you can simply do another experiment? Here, we explain how conceptual models, which have been formulated mathematically, have provided insights that directly advance experimental cell biology. In the past several years, models have influenced the way we talk about signalling networks, how we monitor them, and what we conclude when we perturb them. These insights required wet-lab experiments but would not have arisen without explicit computational modelling and quantitative analysis. Today, the best modellers are crosstrained investigators in experimental biology who work closely with collaborators but also undertake experimental work in their own laboratories. Biologists would benefit by becoming conversant in core principles of modelling in order to identify when a computational model could be a useful complement to their experiments. Although the mathematical foundations of a model are useful to appreciate its strengths and weaknesses, they are not required to test or generate a worthwhile biological hypothesis computationally.
Key words: Cell signalling, Computational biology, Systems biologyIntroduction A decade ago, we welcomed the first signalling-network models that were strongly grounded in wet-lab experiments (Hoffmann et al., 2002;Schoeberl et al., 2002). Excellent models now exist for many canonical signalling circuits in a variety of biological settings. However, such models should not be viewed as an end product but rather as a tool for addressing systems-level challenges in cell biology . Have models fulfilled this role and have they provided biological insights that experimentalists should bother to care about? Here, we answer 'Yes' to both questions and predict that signallingnetwork models will soon become indispensable for modern research in the field. Fortunately, the current wealth of dataintensive methods has primed today's cell biologists to embrace modelling, even though they may lack formal training in the underlying mathematics.In this Opinion, we propose that empirical cell biologists have much to gain from signalling-network models, and much to give by ensuring that these models stay in touch with reality. We begin with a brief primer on how computational models can be critically assessed from a biological standpoint. Then, we walk through a series of important insights about cell signalling that have stemmed from computational-systems modelling. We conclude with future perspectives on where signalling-network models are just beginning to have an impact and will continue to do so in the coming years.