2022
DOI: 10.5753/jidm.2022.2544
|View full text |Cite
|
Sign up to set email alerts
|

Capturing Provenance from Deep Learning Applications Using Keras-Prov and Colab: a Practical Approach

Abstract: Due to the exploratory nature of DNNs, DL specialists often need to modify the input dataset, change a filter when preprocessing input data, or fine-tune the models’ hyperparameters, while analyzing the evolution of the training. However, the specialist may lose track of what hyperparameter configurations have been used and tuned if these data are not properly registered. Thus, these configurations must be tracked and made available for the user’s analysis. One way of doing this is to use provenance data deriv… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
1
1
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 16 publications
0
1
0
1
Order By: Relevance
“…between predictions and training data. However, this work has been used by [65] to create an entire tracking of data from pre-processing through deep learning. Future work in this area includes understanding the granularity of provenance required for users of deep learning systems.…”
Section: Discussionmentioning
confidence: 99%
“…between predictions and training data. However, this work has been used by [65] to create an entire tracking of data from pre-processing through deep learning. Future work in this area includes understanding the granularity of provenance required for users of deep learning systems.…”
Section: Discussionmentioning
confidence: 99%
“…Por meio dos dados de proveniência, o usuário é capaz de consultar e analisar como os dados são produzidos em cada iterac ¸ão, consultando valores de hiperparâmetros, métricas de avaliac ¸ão, etc. Embora o uso de proveniência para compreensão de treinamento de modelos não seja algo novo [Chapman et al 2022, Pina et al 2023, ainda existem poucas propostas no contexto do AF [Peregrina et al 2022]. Entretanto, as soluc ¸ões propostas ou não capturam o histórico de derivac ¸ão completo (focando apenas em atribuic ¸ão de responsabilidades , ou seja, nos agentes que executam as atividades do workflow e não nas atividades em si ), ou possuem representac ¸ões proprietárias para os dados que não são aderentes a padrões de representac ¸ão de proveniência como o W3C PROV [Groth and Moreau 2013].…”
Section: Introduc ¸ãOunclassified