Patients with cancer commonly experience seizures. Combined therapy with anticonvulsant drugs (AEDs) and chemotherapeutic drugs or tyrosine kinase inhibitors carries inherent risks on drug-drug interactions (DDIs). In this review, pharmacokinetic studies of AEDs with chemotherapeutic drugs, tyrosine kinase inhibitors, and glucocorticoids are discussed, including data on maximum tolerated dose, drug clearance, elimination half-life, and organ exposure. Enzyme-inducing AEDs (EIAEDs) cause about a 2-fold to 3-fold faster clearance of concurrent chemotherapeutic drugs metabolized along the same pathway, including cyclophosphamide, irinotecan, paclitaxel, and teniposide, and up to 4-fold faster clearance with the tyrosine kinase inhibitors crizotinib, dasatinib, imatinib, and lapatinib. The use of tyrosine kinase inhibitors, particularly imatinib and crizotinib, may lead to enzyme inhibition of concurrent therapy. Many of the newer generation AEDs do not induce or inhibit drug metabolism, but they can alter enzyme activity by other drugs including AEDs, chemotherapeutics and tyrosine kinase inhibitors. Glucocorticoids can both induce and undergo metabolic change. Quantitative data on changes in drug metabolism help to apply the appropriate dose regimens. Because the large individual variability in metabolic activity increases the risks for undertreatment and/or toxicity, we advocate routine plasma drug monitoring. There are insufficient data available on the effects of tyrosine kinase inhibitors on AED metabolism.